Simultaneous analysis of defense-related phytohormones in Arabidopsis thaliana responding to fungal infection1

نویسندگان

  • Katlego B. Riet
  • Nombuso Ndlovu
  • Lizelle A. Piater
  • Ian A. Dubery
چکیده

PREMISE OF THE STUDY Simultaneous analysis of defense-related phytohormones can provide insights into underlying biochemical interactions. Ultra-high-performance liquid chromatographic (UHPLC) techniques hyphenated to electrospray ionization mass spectrometry (ESI-MS) are powerful analytical platforms, suitable for quantitative profiling of multiple classes of metabolites. METHODS An efficient and simplified extraction method was designed followed by reverse-phase UHPLC for separation of seven phytohormones: salicylic acid, methyl salicylate, jasmonic acid, methyl jasmonate, absiscic acid, indole acetic acid, and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. A triple quadrupole multiple reaction monitoring (MRM) method was developed for MS quantification. The methods were applied to analyze phytohormones in Arabidopsis leaf tissue responding to biotic stresses. RESULTS Under the optimized conditions, the phytohormones were separated within 15 min, with good linearities and high sensitivity. Repeatable results were obtained, with the limits of detection and quantification around 0.01 ng/μL (∼9 ng/g tissue). The method was validated and applied to monitor, quantify, and compare the temporal changes of the phytohormones under biotic stress. DISCUSSION Quantitative changes indicate increased production of defense phytohormones from the various classes. The analytical method was useful and suitable to distinguish distinctive variations in the phytohormonal profiles and balance in A. thaliana leaves resulting from pathogen attack.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...

متن کامل

The impacts of TRR14 over-expression on Arabidopsis thaliana growth and some photosynthetic parameters

Background: TRR14 protein is a small member of a multi-gene family in Arabidopsis and is the first ones found during screening of seedlings for their resistant to the trehalose sugar.Objectives: Characterization ofTRR14 over-expressed plants with respect to morphological changes, growth and photosynthesis related parameters.Materials and methods: TRR14gene was isolated from Arabidop...

متن کامل

Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop

Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects....

متن کامل

Yeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction

SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016